top of page

Members of the Borodavka Group are shown in bold.

  1. Strauss,S., Acker,J., Papa,G., Desirò,D., Schueder,F., Borodavka,A. and Jungmann,R. Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus. (2023) Elife, 12, e68670.

  2. Arter, WE, Qi, Runzgang, Erkamp, NA, Krainer, G, Didi, K, Welsh, TJ, Acker, J, Nixon-Abell, J, Qamar, S., Guillen-Boixet, J, Franzmann, TM, Kuster, D, Hyman, T, Borodavka, A, St George-Hyslop, P, Alberti, S, Knowles, TPJ. High-Resolution Biomolecular Condensate Phase Diagrams with a Combinatorial Microdroplet Platform. (2022) Nature Communications, 13, 7845.

  3. Coria, A., Wienecke, A., Knight L. M., Desiró, D., Laederach, A., Borodavka, A. Rotavirus RNA chaperone mediates global transcriptome-wide increase in RNA backbone flexibility. (2022) Nucleic Acids Research, 50 (17), 10078-10092.

  4. Diebold, O., Gonzales, V, Venditti, L., Sharp, C., Blake, R.A., Stevens, J., Caddy, S., Digard, P., Borodavka, A*, *Gaunt, E. (2022) Engineering a Vaccine Platform using Rotavirus A to Express SARS-CoV-2 Spike Epitopes. Journal of Virology, 96 (14): e00488-22.

  5. Geiger F., Acker J., Papa G., Wang X., Arter W.E., Saar K.L., Erkamp N.A., Qi R., Bravo JPK, Strauss S., Krainer G., Burrone O., Jungmann R., Knowles TPJ, Engelke H., *Borodavka A. (2021) Rotavirus replication factories are complex biomolecular condensates. EMBO J., 40 (21): e107711.

  6. Bravo JPK, Bartnik K, Venditti L, Acker J, Gail EH, Davidovich C, Lamb DC, Tuma R, Calabrese AN, *Borodavka A. (2021) Structural basis of rotavirus RNA chaperone displacement and RNA annealing. PNAS. 118 (41) e2100198118.

  7. Papa G., Borodavka A., Desselberger, U. (2021) Viroplasms: Assembly and Functions of Rotavirus Replication Factories. Viruses. 13(7) 1349.

  8. *Caddy S., *Papa G., *Borodavka A., *Desselberger, U. (2021) Rotavirus research: 2014-2020. Virus Research, 304, 198499.

  9. Raddaoui N, Groce S, Geiger F, Borodavka A, Möckl L, Stazzoni S, Viverge B, Bräuchle C, Frischmuth T, Engelke H. (2020) Super-sensitive multi-fluorophore RNA-FISH for early virus detection and flow-FISH using click chemistry. ChemBioChem, 21: 2214-2218.

  10. Papa, G., Venditti L., Arnoldi, F., L., Borodavka A., Eichwald, C., Burrone, O. (2019) Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories. Journal of Virology, 94: e01110-19.

  11. Borodavka, A., Desselberger U., Patton JT. (2018). Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. 33: 106-112. Current Opinions in Virology. PMID: 30145433.

  12. Bravo, J.P.K., *Borodavka, A., Barth, A., Calabrese, A.N., Mojzes, P., Cockburn, J.J.B., Lamb, D.C., Tuma, R. (2018). Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res., 46(15): 7924-7937.

  13. *Borodavka, A., Dykeman, E.C., Schrimpf, W., Lamb, D.C. (2017). Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. Elife 6, e27453. PMCID: PMC5621836.

  14. Borodavka, A., Singaram, S.W., Stockley, P.G., Gelbart, W.M., Ben-Shaul, A, Tuma, R. (2016). Sizes of Long RNA Molecules Are Determined by the Branching Patterns of Their Secondary Structures. Biophys J. 111, 2077-2085.

  15. *Borodavka, A., Ault, J., Stockley, P.G., Tuma, R. (2015). Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment. Nucleic Acids Res. 43, 7044-57.

  16. Stockley, P.G., Twarock, R., Bakker, S.E., Barker, A.M., Borodavka, A., Dykeman, E., Ford, R.J., Pearson, A.R., Phillips, S.E., Ranson, N.A. & Tuma, R. (2013). Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. J Biol Phys. 39, 277-87.

  17. Borodavka, A., Tuma, R., Stockley, P.G. (2013). A two-stage mechanism of viral RNA compaction revealed by single-molecule fluorescence. RNA Biology 10, 481-9.

  18. Borodavka, A., Tuma, R., Stockley, P.G. (2012). Evidence that viral RNAs have evolved for efficient, two-stage packaging. PNAS, 109, 15769-74.

bottom of page